Copied to
clipboard

G = C42.125D6order 192 = 26·3

125th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.125D6, C6.92- 1+4, (S3xQ8):5C4, (C4xQ8):10S3, (Q8xC12):7C2, C4:C4.323D6, (Q8xDic3):8C2, Q8.17(C4xS3), (C4xDic6):38C2, C6.25(C23xC4), (C2xQ8).224D6, C2.4(Q8oD12), (C2xC6).116C24, C12.35(C22xC4), C42:2S3.3C2, Dic6.20(C2xC4), D6.19(C22xC4), Dic6:C4:18C2, (C4xC12).168C22, (C2xC12).495C23, D6:C4.124C22, C22.35(S3xC23), (C6xQ8).216C22, C4:Dic3.366C22, C2.2(Q8.15D6), Dic3.11(C22xC4), (C4xDic3).84C22, Dic3:C4.137C22, (C22xS3).175C23, C3:2(C23.32C23), (C2xDic6).290C22, (C2xDic3).212C23, C4.35(S3xC2xC4), (C2xS3xQ8).6C2, (C4xS3).9(C2xC4), C2.27(S3xC22xC4), (S3xC2xC4).69C22, C4:C4:7S3.10C2, (C3xQ8).16(C2xC4), (C3xC4:C4).344C22, (C2xC4).288(C22xS3), SmallGroup(192,1131)

Series: Derived Chief Lower central Upper central

C1C6 — C42.125D6
C1C3C6C2xC6C22xS3S3xC2xC4C2xS3xQ8 — C42.125D6
C3C6 — C42.125D6
C1C22C4xQ8

Generators and relations for C42.125D6
 G = < a,b,c,d | a4=b4=1, c6=d2=a2, ab=ba, cac-1=dad-1=a-1, bc=cb, dbd-1=a2b, dcd-1=c5 >

Subgroups: 504 in 266 conjugacy classes, 151 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2xC4, C2xC4, C2xC4, Q8, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C42, C42, C22:C4, C4:C4, C4:C4, C22xC4, C2xQ8, C2xQ8, Dic6, C4xS3, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, C42:C2, C4xQ8, C4xQ8, C22xQ8, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, D6:C4, C4xC12, C3xC4:C4, C2xDic6, S3xC2xC4, S3xQ8, C6xQ8, C23.32C23, C4xDic6, C42:2S3, Dic6:C4, C4:C4:7S3, Q8xDic3, Q8xC12, C2xS3xQ8, C42.125D6
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, D6, C22xC4, C24, C4xS3, C22xS3, C23xC4, 2- 1+4, S3xC2xC4, S3xC23, C23.32C23, S3xC22xC4, Q8.15D6, Q8oD12, C42.125D6

Smallest permutation representation of C42.125D6
On 96 points
Generators in S96
(1 15 7 21)(2 22 8 16)(3 17 9 23)(4 24 10 18)(5 19 11 13)(6 14 12 20)(25 78 31 84)(26 73 32 79)(27 80 33 74)(28 75 34 81)(29 82 35 76)(30 77 36 83)(37 87 43 93)(38 94 44 88)(39 89 45 95)(40 96 46 90)(41 91 47 85)(42 86 48 92)(49 71 55 65)(50 66 56 72)(51 61 57 67)(52 68 58 62)(53 63 59 69)(54 70 60 64)
(1 42 57 82)(2 43 58 83)(3 44 59 84)(4 45 60 73)(5 46 49 74)(6 47 50 75)(7 48 51 76)(8 37 52 77)(9 38 53 78)(10 39 54 79)(11 40 55 80)(12 41 56 81)(13 96 65 33)(14 85 66 34)(15 86 67 35)(16 87 68 36)(17 88 69 25)(18 89 70 26)(19 90 71 27)(20 91 72 28)(21 92 61 29)(22 93 62 30)(23 94 63 31)(24 95 64 32)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 22 19 16)(14 15 20 21)(17 18 23 24)(25 32 31 26)(27 30 33 36)(28 35 34 29)(37 40 43 46)(38 45 44 39)(41 48 47 42)(49 58 55 52)(50 51 56 57)(53 54 59 60)(61 66 67 72)(62 71 68 65)(63 64 69 70)(73 84 79 78)(74 77 80 83)(75 82 81 76)(85 92 91 86)(87 90 93 96)(88 95 94 89)

G:=sub<Sym(96)| (1,15,7,21)(2,22,8,16)(3,17,9,23)(4,24,10,18)(5,19,11,13)(6,14,12,20)(25,78,31,84)(26,73,32,79)(27,80,33,74)(28,75,34,81)(29,82,35,76)(30,77,36,83)(37,87,43,93)(38,94,44,88)(39,89,45,95)(40,96,46,90)(41,91,47,85)(42,86,48,92)(49,71,55,65)(50,66,56,72)(51,61,57,67)(52,68,58,62)(53,63,59,69)(54,70,60,64), (1,42,57,82)(2,43,58,83)(3,44,59,84)(4,45,60,73)(5,46,49,74)(6,47,50,75)(7,48,51,76)(8,37,52,77)(9,38,53,78)(10,39,54,79)(11,40,55,80)(12,41,56,81)(13,96,65,33)(14,85,66,34)(15,86,67,35)(16,87,68,36)(17,88,69,25)(18,89,70,26)(19,90,71,27)(20,91,72,28)(21,92,61,29)(22,93,62,30)(23,94,63,31)(24,95,64,32), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,22,19,16)(14,15,20,21)(17,18,23,24)(25,32,31,26)(27,30,33,36)(28,35,34,29)(37,40,43,46)(38,45,44,39)(41,48,47,42)(49,58,55,52)(50,51,56,57)(53,54,59,60)(61,66,67,72)(62,71,68,65)(63,64,69,70)(73,84,79,78)(74,77,80,83)(75,82,81,76)(85,92,91,86)(87,90,93,96)(88,95,94,89)>;

G:=Group( (1,15,7,21)(2,22,8,16)(3,17,9,23)(4,24,10,18)(5,19,11,13)(6,14,12,20)(25,78,31,84)(26,73,32,79)(27,80,33,74)(28,75,34,81)(29,82,35,76)(30,77,36,83)(37,87,43,93)(38,94,44,88)(39,89,45,95)(40,96,46,90)(41,91,47,85)(42,86,48,92)(49,71,55,65)(50,66,56,72)(51,61,57,67)(52,68,58,62)(53,63,59,69)(54,70,60,64), (1,42,57,82)(2,43,58,83)(3,44,59,84)(4,45,60,73)(5,46,49,74)(6,47,50,75)(7,48,51,76)(8,37,52,77)(9,38,53,78)(10,39,54,79)(11,40,55,80)(12,41,56,81)(13,96,65,33)(14,85,66,34)(15,86,67,35)(16,87,68,36)(17,88,69,25)(18,89,70,26)(19,90,71,27)(20,91,72,28)(21,92,61,29)(22,93,62,30)(23,94,63,31)(24,95,64,32), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,22,19,16)(14,15,20,21)(17,18,23,24)(25,32,31,26)(27,30,33,36)(28,35,34,29)(37,40,43,46)(38,45,44,39)(41,48,47,42)(49,58,55,52)(50,51,56,57)(53,54,59,60)(61,66,67,72)(62,71,68,65)(63,64,69,70)(73,84,79,78)(74,77,80,83)(75,82,81,76)(85,92,91,86)(87,90,93,96)(88,95,94,89) );

G=PermutationGroup([[(1,15,7,21),(2,22,8,16),(3,17,9,23),(4,24,10,18),(5,19,11,13),(6,14,12,20),(25,78,31,84),(26,73,32,79),(27,80,33,74),(28,75,34,81),(29,82,35,76),(30,77,36,83),(37,87,43,93),(38,94,44,88),(39,89,45,95),(40,96,46,90),(41,91,47,85),(42,86,48,92),(49,71,55,65),(50,66,56,72),(51,61,57,67),(52,68,58,62),(53,63,59,69),(54,70,60,64)], [(1,42,57,82),(2,43,58,83),(3,44,59,84),(4,45,60,73),(5,46,49,74),(6,47,50,75),(7,48,51,76),(8,37,52,77),(9,38,53,78),(10,39,54,79),(11,40,55,80),(12,41,56,81),(13,96,65,33),(14,85,66,34),(15,86,67,35),(16,87,68,36),(17,88,69,25),(18,89,70,26),(19,90,71,27),(20,91,72,28),(21,92,61,29),(22,93,62,30),(23,94,63,31),(24,95,64,32)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,22,19,16),(14,15,20,21),(17,18,23,24),(25,32,31,26),(27,30,33,36),(28,35,34,29),(37,40,43,46),(38,45,44,39),(41,48,47,42),(49,58,55,52),(50,51,56,57),(53,54,59,60),(61,66,67,72),(62,71,68,65),(63,64,69,70),(73,84,79,78),(74,77,80,83),(75,82,81,76),(85,92,91,86),(87,90,93,96),(88,95,94,89)]])

54 conjugacy classes

class 1 2A2B2C2D2E 3 4A···4N4O···4AB6A6B6C12A12B12C12D12E···12P
order12222234···44···46661212121212···12
size11116622···26···622222224···4

54 irreducible representations

dim11111111122222444
type++++++++++++--
imageC1C2C2C2C2C2C2C2C4S3D6D6D6C4xS32- 1+4Q8.15D6Q8oD12
kernelC42.125D6C4xDic6C42:2S3Dic6:C4C4:C4:7S3Q8xDic3Q8xC12C2xS3xQ8S3xQ8C4xQ8C42C4:C4C2xQ8Q8C6C2C2
# reps133331111613318222

Matrix representation of C42.125D6 in GL6(F13)

1200000
0120000
0010120
0001012
0020120
0002012
,
800000
080000
0011400
009200
0000114
000092
,
110000
1200000
000508
008558
000008
000058
,
1200000
110000
005080
005885
000080
000085

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,2,0,0,0,0,1,0,2,0,0,12,0,12,0,0,0,0,12,0,12],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,11,9,0,0,0,0,4,2,0,0,0,0,0,0,11,9,0,0,0,0,4,2],[1,12,0,0,0,0,1,0,0,0,0,0,0,0,0,8,0,0,0,0,5,5,0,0,0,0,0,5,0,5,0,0,8,8,8,8],[12,1,0,0,0,0,0,1,0,0,0,0,0,0,5,5,0,0,0,0,0,8,0,0,0,0,8,8,8,8,0,0,0,5,0,5] >;

C42.125D6 in GAP, Magma, Sage, TeX

C_4^2._{125}D_6
% in TeX

G:=Group("C4^2.125D6");
// GroupNames label

G:=SmallGroup(192,1131);
// by ID

G=gap.SmallGroup(192,1131);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,387,184,1123,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<